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Abstract

Dependency in large networks is among the most intractable challenges in social network
analysis, as current approaches are computationally infeasible in networks with thousands of
nodes. In this article, we introduce path-weighted regression (PWR), a novel and computa-
tionally efficient method to assess spatial dependency and non-stationarity in large networks.
PWR estimates separate models for each node in the network and weighs nearby nodes more
heavily than distant nodes. This approach allows us to estimate local effects in a large
network efficiently. We illustrate PWR using a large Twitter network with 280,000 nodes
showing the reaction by Republicans and Democrats to Trump’s Covid-19 diagnosis

1 Introduction

In less than a decade, we entered in an era of massive data sets reporting inter-connected

observations. Social media data provides one of the most visible examples, but it represents

just the tip of the data iceberg. Wireless phone networks (Chung et al., 2007), live transit data

(Pinelli et al., 2016; Verma and Bhatia, 2013), e-cities and e-government data (Grujic et al.,

2014), citation networks (Radicchi et al., 2012; Ding et al., 2009), legislative records (Poole,

2005), scientific mentoring dyads (Keller and Blakeslee, 2014), are all part of vast, clean, and

accessible sources of information currently at our disposal. As it was noted by Henry E. Brady

recently: “Social scientists must come to grips with the current dramatic transformations in

the communication of information, which parallel the striking changes in transportation in the

nineteenth century” (Brady, 2019, pp. 299).
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Dependency in large networks is among the most difficult challenges currently faced by schol-

ars trained in social network analysis, a field that developed most of its techniques to describe

small and sparsely featured datasets (Freeman, 2004; Ward et al., 2011). As is the case for

their smaller counterparts, observations in large networks are not independent and identically

distributed draws from a population. Paraphrasing Tobler’s first law of geography, everything

is related to everything else, but connected things are more related to each other than uncon-

nected ones. As we move from small and shallow relational data sets to large and fully featured

ones, storing and representation, processing time, parallelization, data dependency, model spec-

ification, and model estimation, need to be considered together. In this article, we introduce a

fast and simple Path Weighted Regression (PWR) strategy to model data dependency in large

networks. The proposed statistical function allows researchers to model network dependency,

giving more weight to observations that are closely connected and less weight to distant ones.1

Path Weighted Regression has a number of advantages for analyzing very large networks.

First, different from most existing social network’s statistical models, estimation can be divided

into discrete processing batches, making parallelization easy. Second, computational demands

increase linearly with network size, rather than exponentially. Therefore, as network size in-

creases estimation does not become exponentially slower. Third, the weighting scheme used by

PWR can be easily extended to any General Linear Model. Fourth, the Path Weighted Re-

gression produces local estimates that can be used to smooth univariate distributions in large

social networks, either for visualization purposes or as an intermediate product for two-stage

error correction models.

Path Weighted Regression also has some important limitations. First, just as its cousin,

Geographically Weighted Regression, local inferences lack statistical properties for hypothesis

testing. Second, because distances in networks tend to have lower dispersion than in geography,

1The PWR is a close relative to other local linear estimation alternatives used to model dependency in geo-
graphic models Fotheringham et al. (2002); Lloyd (2011); Anselin and Bera (1998) and in survival models (Cai
and Sun, 2003).
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discrimination is also lower. Third, the PWR cannot easily accommodate complex network

structures, such as triangles. While strong and weak ties can be calibrated, triadic closure is

not evaluated.

Despite these limitations, PWR does provide a simple and fast alternative for local estimation

in very large networks. Therefore, we think it provides a valuable tool for practitioners and

researchers. In this short research note, we describe the PWR model and its R implementation.

2 An introduction to Path Weighted Regression models

When working with very large networks, many of the existing tools to model dependency are

computationally unfeasible. In a recent article, Schmid and Desmarais (2017) note that ERGM

models are computationally prohibitive once they reach 1,000 nodes, a modest network size by

today’s standards. As networks increase in size, they argue, Maximum Pseudolikelihood Es-

timation (MPLE) may provide the only computational alternative in real applications. Even

in MPLE, however, the estimation of network structures, such as triangles, stars or geodesic

forms, becomes computationally unfeasible for medium sized networks of thousands of nodes.

PWR is a useful alternative for political scientists that seek to model spatial dependency and

non-stationarity in very large networks efficiently. Estimation takes into consideration the path-

distance to nearby nodes as well as local network heterogeneity. The PWR resembles two other

widely used modelling approaches. First is Geographically Weighted Regression (GWR) (Fother-

ingham et al., 2002; Lloyd, 2011; Darmofal, 2008), a technique designed to model relationships

that vary in space by weighting more heavily observations that are geographically closer. GWR

constructs separate equations for each feature of the dataset and estimates neighborhood effects.

As the PWR, the GWR is especially useful for large datasets. We draw from the logic of the

GWR model to build the PWR approach in two important ways. We can approximate local es-

timates better by weighing more heavily the characteristics of the neighbors, and we can achieve

this by running separate and independent regressions at the node level with a weight matrix.
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The model takes as input the distance matrix of a network and gives more weight to those nodes

that are connected by shorter paths. In doing so, the PWR strategy maps the local effects of

unobserved factors across closely connected nodes.2 Second, the PWR also bears similarity to

LOESS models (Jacoby, 2000; Keele, 2008), a family of non-parametric approaches that use

local weighted regression to reveal local non-linear trends in the data that parametric models

may miss. Local estimates from LOESS weigh immediate neighbors more heavily through a

vector of weights that also varies by node, as in the PWR. While the LOESS is useful to detect

descriptive trends in the data that may be difficult to find through parametric models, it lacks

properties for hypothesis testing and causal inference. This also applies to the PWR, which

is especially helpful in understanding local differences in a network and provides a great new

tool to assess dependency, primarily in large networks. It is not useful, however, for hypothesis

testing.

2.1 The path weighted local regression

Consider a simple linear model on data drawn from a fully connected network, where the de-

pendent (node) variable yi is explained by a set of observed covariates xN and unobserved

parameters βN :

yi = β0 + β1x1i + β2x2i + ...+ βnxni + εi (1)

In OLS, we minimize the sum of square residuals and solve for the β̂ parameters, so that:

MSE(β) =
1

N

N∑
i=1

(yi − xiβ)2 (2)

β̂ =
(
X ′X

)−1
X ′y (3)

2We direct the reader to some applications of GWR in the literature here (Darmofal, 2008; Cho and Gimpel,
2009; Calvo and Escolar, 2003).
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For any given node, we consider that observations that are more closely connected (lower

path distances) weigh more heavily than observations that are further away. Therefore, at each

node in the network we estimate separate weighted linear regression models:

wMSE(β,w1, ..., wN ) =
1

N

N∑
i=1

wi (yi − xiβ)2 (4)

And solve for the local parameters:

β̂ =
(
X ′WX

)−1
X ′Wy (5)

PWR estimates separate models for each node (or for a sample of nodes) in the network.

Observations that are further removed from each node weigh less than observations that are

more closely connected. Therefore, all PWR estimates are local and the output of the model

returns parameters that vary for each covariate at each node i connected to every other node j.

Model results provide a full distribution of β̂ parameters for all nodes in the network, which

can then be post-processed and visualized. Heterogeneous effects of the independent variables by

node location, consequently, allow researchers to understand differences in content propagation

at different regions of the network.

In contrast with GWR in spatial models, path distances in networks are shorter, with a rel-

atively small set of discrete values that connect all nodes (e.g. small world network). Therefore,

bandwidths across different networks will be similar to each other and the bandwidths narrower

than in GWR. For our implementation of the PWR, we consider the minimum number of paths

connecting each pair of nodes, creating a distance weights matrix. In dense areas of a network,

therefore, there will be a larger sample of minimum paths connecting all nodes. By contrast, in

sparsely connected regions of a network the opposite holds.

More important, shorter paths in densely packed communities will display lower variation

across nodes as information will travel faster. Meanwhile, longer distances across communities
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will result in higher parameter discrimination. That is, more dense networks will reduce local

effects, as the distance across all pairs of nodes will be smaller. Meanwhile, local effects will be

more distinct in sparse networks, where path distances across nodes are on average larger.

Similar to GWR, building the weights matrix requires that researchers decide the relative

contribution of nodes through a decay function. Several options are available, with the Gaussian

weighting function being the most common choice in the the existing literature (Fotheringham

et al., 2002; Darmofal, 2015). The Gaussian discount function takes the form:

wij = exp

(
−I

2
Pij

b

2

)

In the previous equation, Pij describes the minimum number of paths connecting node i to

node j, and b is the bandwidth for the path-decay of the weighting function. A larger bandwidth

results in estimates that are more distinctively local. By contrast, a smaller bandwidth produces

estimates that are roughly similar across nodes. As in other local polynomial models, there is

a trade-off between bias and variance in the choice of the PWR bandwith. To approximate an

optimal bandwidth, we employ leave-one-out cross validation selection, a widely used data-driven

strategy (Fotheringham et al., 2002):

CV =
N∑
i=1

(yi − ŷi 6=i)
2

The cross validation procedure uses a leave-one-out process in which each local estimation of

the observation i, where the local parameter is centered, receives a weight equal to zero. Then,

the score takes the square difference of the yi and the prediction of the model for the observation

where the weight was set to zero. We provide an analytical solution to find the point where the

optimal value of the CV score is minimized after performing a grid search from the default values

of our package ranging from a exponential function from 0 to 3 using intervals of .5. We suggest

taking a sample of different points when dealing with big network data. The same procedure
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is suggested in applications of the Geographically Weighted Regression (Fotheringham et al.,

2002).

One of the advantages of the path weighted regression model is that it can be easily paral-

lelized. We run separate regressions for each node, weighing more heavily those vertices that are

closer to each other. The model can independently fit as many linear regressions as there are

nodes in the network. Since calculations are computed using the same bandwidth on a steady

weights’ matrix, regressions can be run in parallel rather than sequentially, which translates into

faster processing times.3 Additionally, the weight matrix in a PWR model does not increase

exponentially and, as a result, computational demands remain manageable even as network size

increases. Thus, PWR is a fast and efficient modelling strategy for large networks.

3 Application: Analysis of Twitter Networks After Trump Con-

tracted the Coronavirus

To provide an example of the usefulness of PWR, we take as dependent variable the reaction

time on twitter when President Donald Trump Jr. posted news of his COVID-19 diagnostic. We

then model trolling behavior in social media, describing the change in the time-to-retweet when

the posted tweet includes the emoji “face-with-tears-of-joy”. In this section we first describe the

social activity in Twitter when Trump announced his COVID-19 diagnostics. We then provide

PWR model estimates with node specific parameters describing trolling behavior.

At 12:54am on October 2, 2020, Trump published a tweet announcing that he had tested

positive for COVID-19. This tweet would become one of his most viral messages on the platform,

gathering 1.8 million likes and 400,000 retweets. Figure 1 provides descriptive information

on network activity that leverages pre- and post-announcement activity related to Trump on

Twitter.

3The extent of these savings will depend on the number of cores available and the clock speed of each core,
virtual or real. Gains are particularly important for large networks, which are more computationally demanding.
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The news that President Trump contracted COVID-19 yielded well-known activity of shared

attention that is described by Lin et al. (2014) in their study of “rising tides and rising stars”.

As expected, the data shows a large inflow of new messages by a broader periphery of users

(“rising tides”) that is accompanied by more hierarchical sharing of publications posted by a

few nodes (“rising stars”).

As part of the election coverage effort of the iLCSS, we captured streaming data from Twit-

ter’s API V.1 (forward capture), collecting all tweets with the character string “Trump” posted

during the 12-hour period around the 12:54am announcement –that is, between 6:54pm on Oc-

tober 1 and 6:54am on October 2. We then filter out unique tweets that were not shared and

implemented a community detection algorithm to retain the primary connected network engaged

on the COVID-19 topic. The process yielded a total of 3,994,860 tweets by a total of 280,041

high activity unique users.

We first provide a visual representation of the #TrumpCovid network in 1. The vertical

axis describes binned shared times, time-to-retweet(LN), for batches of tweets shared during

the 12 hour window of the study. The horizontal axis describes the time of each set of binned

retweets. As it is possible to oberve, there is significant twitter related to Trump before and

after the announcement. However, activity increases and time-to-retweet declines (lower reaction

time) after the announcement of the COVID-19 diagnostics. Figure 1 shows that at the time of

the diagnostics, time-to-retweet decline 78%, exp(7)/exp(8.5) = 0.223 among democratic users

and 40%, exp(8.3)/exp(9.2) = 0.406, among Republican users. Attention to the event was

larger among Democratic users, who were more engaged and displayed faster reaction times. To

facilitate visual interpretation of the results, Figure 1 overlays on the upper-left side the [x,y]

network coordinates for the Democratic and Republican users,4 with blue and red solid circles

to describe Democratic and Republican users identified by the walk.trap algorithm in igraph

4Estimation of the layout was implemented using the Fruchterman-Reingold layout function of igraph on the
primary connected cluster of the network.
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Figure 1: Time-to-retweet (LN) in Primary Connected Network of #TrumpCovid. Layout of the
descriptive network overlayed in the upper right. Total number of users (nodes) is 280,041, with
layout and community detection from 3,994,860 retweets. Blue dots describe Democratic users.
Red dots describe Republican users. Layout of nodes estimated using the Fruchterman-Reingold
algorithm in IGraph. Community detection using the Walk.trap algorithm in IGraph, (Csardi
and Nepusz, 2006).

Modeling Trolling: Time-to-retweet and “face-with-tears-of-joy” in Twitter

To describe trolling in our network, we estimate a PWR specification with reaction time as

our dependent variable and the emoji “face-with-tears-of-joy” as a covariate. Results describe

heterogeneous effects on time-to-retweet within communities as well as the change in time-to-

retweet when the the selected emoji was inserted in a tweet.

The emoji “face-with-tears-of-joy” was named word of the year (WOTY) in 2016 by the

5 The walk.trap algorithm (Pons and Latapy, 2006) retrieved an index community value for each node (Csardi
and Nepusz, 2006), sorting network nodes into three communities that we identified by their highest in-degree
users as Republicans (146,224 users – red), Democrats (102,671 users –blue) and independents or unaffiliated
accounts (31,146 users –maroon).
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Oxford Dictionary (Skiba, 2016) and has been frequently analyzed as an efficient emotional

enhancer (Gullberg, 2016). In its two flavors (straight and slanted face), it is frequently used

as a teaser, with positive and negative interpretations when it celebrates novel occurrences or,

alternatively, laughs at the other user’s misfortune. This second alternative is considered a form

of malicious joy (Schadenfreude). It is frequently used in political networks as a trolling emoji

and can be readily extracted as useful information. We exemplify a model specification that

uses “face-with-tears-of-joy”, with parameters that summarize within- and across-community

heterogeneity in its use and acceptance.

Estimation of PWR

We first retrieve an optimal bandwidth for the weight matrix of path distances. To this end, we

select a 10% random samples of nodes, using the mean of these distributions to estimate the full

cross-validation model. Figure 2 plots the sampling distribution of the bandwidth, which return

an optimal bandwith of 1.2 to be used on the complete dataset. It is worth noting that smaller

bandwidths will increase local effects while larger bandwidths will provide local estimates that

are closer to the overall network mean. Finally, as suggested in the previous section, we use

parallelization for faster model estimation. Generally, the PWR can generate local estimates for

large networks between 10 and 15 times faster than other available approaches.6

Figure 2: Sampling distribution of the bandwidth selection procedure (10% sample of nodes)

6With 12 real cores and 128GB of RAM, the total processing time for the 280,041 node network was 2 hours
and 35 minutes, as compared with over 24 hours with a fast single-core processor.
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Figure 3 displays the distribution of local β coefficients for the PWR model. We color the

nodes by quintile to facilitate visualization. The size of the nodes describes the time to retweet.

Plot (a) shows local intercepts and Plot (b) depicts the slopes of the model for each node.

Figure 3: PWR Results in the network format. The model runs locally the mean reaction
time (inverse of the time-to-retweet) by node as well as the effect of the the emoji “face-with-
tears-of-joy”. Results show significant heterogeneity in the decline in reaction time among
Democratic users, indicating that the presence of the emoji produced higher within community
discrimination. That is, reaction time to a retweet with “face-with-tears-of-joy” increase the
differences among Democratic users.

The intercept of the model described in the upper plot of 3 shows that the average time to

retweet by users that are located at the center of each community is slower than the average

times of the second periphery. More interesting, the slope estimates displayed in plot (b) show

that the effect of in-degree on time to retweet is larger at the center of each community. That is,

as in-degree increases, the decline in time to retweet is considerably larger for core nodes in the

pro- and anti-Kavanaugh networks than in their peripheries. By contrast, nodes in the periphery
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of each community are quick to propagate content even when their in-degree increases. The lack

of effect of in-degree on content propagation on the second periphery of both communities lends

considerable support for the presence of bots and computer managed accounts.

Interpretation of the results is straightforward, with more negative slope coefficients describ-

ing slower time to retweet as the in-degree increases. The fact that authorities (i.e. users with

higher in-degree) would take a longer time to retweet information is expected for two reasons.

First, high in-degree authorities will be more risk averse in sharing content that may reflect

poorly on them. Second, bots, trolls, and other managed response systems tend to have smaller

numbers of followers and are set up to quickly share content from priority accounts. The het-

erogeneous effects of in-degree on content propagation are large and substantively interesting.

As expected, the model shows that nodes will take longer to share messages from other users

as in-degree increases. Users at the center of each community have a stronger decay function

while, for loosely connected nodes on the periphery, being an authority matters less for quickly

propagating news.

One caveat is important here. As the size of the nodes on figure 3 indicate, authorities

tend to be in the center of each community. Therefore, the average in-degree of the nodes

is higher in the more populated areas of the network. With that feature in mind, the PWR

model allows us to assume that the effects of popularity exhibit increasing returns on the rate of

content activation. One additional retweet on users’ on the periphery of the network who rarely

receive attention have a negligible effect on one’s speed of content’s activation; nonetheless, the

same increase in popularity has more substantial adverse effects in the speed of propagation on

authorities located at the center of the network.

4 Concluding Remarks

As data availability increases, finding novel strategies to model big relational data has become

a more pressing issue. In this article, we introduce readers to a fast and computationally simple
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strategy to describe dependency in large networks. In the last decade, statistical advances to

study small and relatively homogeneous social networks has been remarkable. However, powerful

new techniques such as exponential random graph models become technically challenging or

altogether unfeasible as network size increases. PWR provides an alternative tool for researchers

that seek to take advantage of the information in contiguous nodes of a large network. It provides

a computationally feasible alternative for large heterogeneous networks.

We exemplify the usefulness of the PWR in one application: an analysis of the reaction

time after President Donald Trump discloses a positive COVID-19 diagnostics. Our results

show that the emoji “face-with-tears-of-joy” lowers the average time-to-retweet and it reduces

reaction time more dramatically among democrats. More important, the results of the model

show increased within-democratic discrimination in reaction time. That is, the use of the emoji

reduces reaction time only among some democratic users that are further in the periphery of the

democratic network. This is a substantively interesting result, showing not just that democrats

reduce their ”time-to-retweet” but that the use of the emoji is not universally accepted in this

particular case.
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